Managing micronutrients in cropping systems of Western Australia

Ross Brennan
DAFWA
Albany

What do we have:?

- Cu, Zn, Mn, Mo, B
- B & Al toxicity,
- Range of plant species
- Plant tests [young or whole tops] and
- Soil tests; extractants, methods etc

- A large combination!
- Hence some generalisation and principles.
What do we know?
Mostly: -
 • Immobile in the soil
 • Mostly immobile in the plant when deficient
 • Plants need continuous supply
 • even distribution in soil is essential
 • good fertiliser residual
 • less available at high pH

Factors which affect the plant availability

 • Root interception
 • Placement geometry
 • Soil reactions
 • Differential response of plant species
Root interception

Grain yield (%) of the recommended Cu [5.5 kg Cu sulphate]

<table>
<thead>
<tr>
<th>Past Cu application</th>
<th>kg CuSO4/ha 0</th>
<th>2.75</th>
<th>5.5</th>
<th>8.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>58</td>
<td>76</td>
<td>77</td>
<td>83</td>
</tr>
<tr>
<td>2.75</td>
<td>95</td>
<td>98</td>
<td>95</td>
<td>99</td>
</tr>
<tr>
<td>5.5</td>
<td>100</td>
<td>102</td>
<td>103</td>
<td>100</td>
</tr>
<tr>
<td>8.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11+0.5 yrly</td>
<td>102</td>
<td>102</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Copper concentration in plant

<table>
<thead>
<tr>
<th>Past Cu application</th>
<th>kg CuSO4/ha 0</th>
<th>2.75</th>
<th>5.5</th>
<th>8.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7</td>
<td>1.2</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>2.75</td>
<td>1.7</td>
<td>2</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>5.5</td>
<td>2.9</td>
<td>3.3</td>
<td>3.5</td>
<td>3.7</td>
</tr>
<tr>
<td>8.25</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11+0.5 yrly</td>
<td>5</td>
<td></td>
<td></td>
<td>5.5</td>
</tr>
</tbody>
</table>
Root interception

The efficiency of Cu fertiliser improves:

• If placed in soil regions of high root activity
• No. of granules of Cu per soil volume increases
• Drilling with the seed << topdressed
• Therefore: number of Cu particles and distribution in soil determines the effectiveness of Cu fertiliser

Re-application

How to determine if TE's required

• Soil test
• History: how long since the last
• Plant test
• Plant symptoms: helpful but not the best method
Studies with a range of different soil test Mn procedures, and for plant species are usually poorly related.

Why?

The critical soil test values of Mn for a soil growing a crop are influenced

- by the methods of soil collection and drying,
- the effects of organic reactions and
- inorganic reactions of Mn in soils.
Soil Testing Summary

• Soil tests are not definitive and should only be considered as a guide.

• Zinc (DTPA soil test) is the most reliable soil test. DTPA test - guide for critical levels for Zn (mg Zn/kg): 0.2(sand), 0.3(loam), 0.45(clay)

• Copper (DTPA soil test) > ~0.35 mg/kg likely to be sufficient, but there is little calibration.

• Best diagnosis method is to plant tissue test.

Micronutrient re-application

Application of TE in minimum tillage situations

• Cu and Zn are now concentrated in drilled bands at shallow depth in mostly dry soil and intercepted by too few roots

• There has been little TE reapplication work in these situations

• However, much is known about the factors which affect the availability of TE for plants
Micronutrient re-application

The effect of placement of copper and zinc fertiliser on the concentration in young wheat leaves at the boot stage.

Copper and Zn concentration (mg/kg)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Nil Cu</th>
<th>Cu (1.0)</th>
<th>Nil Zn</th>
<th>Zn (1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilled</td>
<td>2.5</td>
<td>2.8</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>Banded below</td>
<td>2.5</td>
<td>3.6</td>
<td>14</td>
<td>34</td>
</tr>
<tr>
<td>Cultivated</td>
<td>2.8</td>
<td>4.5</td>
<td>16</td>
<td>37</td>
</tr>
</tbody>
</table>

Cu as CuSO4; Zn as ZnO.

Ammonium oxalate soil extractable Cu in placement

N. Jeramungup

(a) In rows

(b) Half in and half between rows
Possible solutions

- Place fertilizer Cu and Zn below seed while sowing
- Cultivate top about 10 cm soil once every 5-7 years
- Sow, and drill or band fertilizer, at diagonal across old sowings
- Soil Test 1:1 is suggested.

Re-application?

Residual value: how long are TE available in the soil?

- Little is removed in agricultural products
- Soil immobile :- held by soil components
- Little/ no leaching from soil- root profile.
- Small additions in fertilisers [e.g. Zn in super]
- Hence last a long time?
Re-application: methods

Re-application: foliar sprays

Cu Foliar @ Gs 47
Summary: Micronutrients

- Immobile in the soil
- Mostly immobile in the plant when deficient
- Plants need continuous supply
- Even distribution in soil is essential
- Good fertiliser residual
- Less available at high pH, except Mo more available
- Soil test mostly unreliable or poor calibration
- Plant tests reliable; Cu, Zn, Mo and Mn

If liming, and no micronutrients application for > 15 years then consider reapplication.

Collaboration & funding

Managing micronutrient deficiencies in cropping systems of WA
A new project funded by GRDC.

Western Region team:
- James Easton, CSBP, Kwinana
- Richard Bell, Murdoch Uni, Murdoch
- Andreas Neuhaus, CSBP, Kwinana
- Neville Chittleborough, DAFWA, Albany Regional Office

Funded by GRDC under the More Profit from Crop Nutrition II.
Thank you
Visit agric.wa.gov.au

Important disclaimer
The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it.
Copyright © Western Australian Agriculture Authority, 2015

Supporting your success
Decisions!!

“Micronutrients should not be applied until tissue testing has shown there is a need. Applying a micronutrient, especially copper because 10 years are up since the last application, or because it gives you a warm feeling, could be very wasteful.”

Corollary: What if it’s undiagnosed

<table>
<thead>
<tr>
<th>Area Cu def. soil in WA</th>
<th>8 million ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% cropped annually</td>
<td>0.8m ha</td>
</tr>
<tr>
<td>Avg. wheat yield</td>
<td>1.5 t/ha</td>
</tr>
<tr>
<td>Avg. wheat yield decrease to undiagnosed Cu deficiency</td>
<td>5%</td>
</tr>
<tr>
<td>Wheat loss: (t)</td>
<td>60000</td>
</tr>
<tr>
<td>Wheat price: ($/t)</td>
<td>275</td>
</tr>
<tr>
<td>Wheat industry loss; ($)</td>
<td>~16 million</td>
</tr>
</tbody>
</table>